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Th'--- T'object of this note is-to record qi~r derivations of the'
' relationships between weighting-factors in smoothing operators and

their spectral response. Both periodic and non-periodic functions
in an infinite domain are treated. Some-basic tools for discrete
functions are derived in the next section. -

II. Basic Mathematical Tools --- -

We start by developing some basic mathematical tools for
periodic discrete functions. Only two of these tools, (3a) and
(3e) below, will be used in this paper, but we will develop the
others here in anticipation of our use of them elsewhere.

Consider X and w'; two functions of a set of integers, m,
and a variable, p, which may be either discrete or continuous.

m n

n=o

m
m(V= I a sin Vn

om nn7o

(la)

(lb)

The discrete function an is introduced as a convenience in the 
following derivations. It is always associated with a summation,
.( ), and has the value ½ at the upper and lower limits as
written, and is unity elsewhere. Thus in (1),

a if n= 0n
or n = m

an = 1 if n # 0
and n m

Now consider a difference of sin Un, taken over an interval
in n of unity. We indicate the difference by the operator

a n( ) =( )nk;tsn sni n -½)
n sin vn = sin p(n + ) - sin -p(n -2 )

= 2 sin ½H - cos pn
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hus, if is not a multiple of 2r,ie p 2k where kis
any integer (including zero), - .

:cosp4n = I-csc 6 n- sin p- -:.

and m- 
W ) = ½ csc½X P n 6 sin pnm _ - .n o ..n- .

j ar m - ... .. .. I -.

The differences under the summation cancel everywhere
the limits: ---

Wm(G) = _ csc ½- -
.(sin p(m + ½) + sin p(m - ½)
° -sin P(2) -sin P(- j )
= ½ cot ½2 - sin Pm

except at

.-(2a)

A similar derivation from (lb) yields

W'(W) = ½ cot ½' *-(l - cos pm) (2b)

If U = 2kr, then cos in = 1 and sin pn = 0, and

m
wm(2kf) = n(l) = m

n=o

m
w'(2kf) (o) =O

n=o

Equations (2a) and (2b) are consistent with these in a limitingsense, e.g.,. -.. :....
Lim ½ cot p * sin pm = m
p+2k:r

Lim ½cot ½P -(l1-cos pm) =0
U+2k~r

We will regard, for convenience, (2a) and (2b) to be valid for
all V, with the understanding that indeterminants are to be re-
solved in a limiting sense.

From (la) and (2a) if p is continuous
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- a- (cot _ :sin im)t 5 .0 in -
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.. -';- - csc2 ½ · sin tm + ½m cot ½p cos: m

- = - csc II - m(l-+ cos W)] - 'm

A similar derivation from (lb) and '(2b) yields

m
ap'= an n cos Pn = -' csc y + Wm

n n
n=o

If p is discrete, the same formulas hold for the summation, as
easily be shown. Again, any indeterminants are to be resolved

limiting sense.

In summary, our basic tools are
m

Wm(p) = I an cos un = cot k½p - sin pm
n=o
m

(P) = a an sin pn = cot 2-p(1 - cos Vm)
m nnmo

a
pa

p-all

m
= I an n sin pn

n=o ' + cc - m( + os ) csc
= 'm + w csc p - ½~m(l + cos p) cac p
m

= X an
n=o

n cos Pn = wm - cscp

0 ~_ fNow, we will slightly extend the meaning of w. Consider

W10(i< ) = cos Vn
n=o

where M is an integer. If M is even, wM(p) is given by (la)

and (2a), but if M is odd, the upper limit, 2M, does not exist
as an integer. In the latter case, it must be understood that

the summation extends only to include ½(M- 1) and since n # ½M
at that limit as written, an = 1 there. Following the deriva-

tion of (2a), we find that

W (p) = ½ csc ½y - sin ½pM ; if M is odd

-can :

in a

(3a)

(3b)

(3c)

(3d)

(3e)

Again, all indeterminants are to be resolved in a limiting sense.
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-III. Smoothing in an Infinite Domain -- '

First we assert - - --

f ics X(i - i)dX " '4).',·' ., - -j ~r ~ ~7r Osf-id (4)

where i and j are integers, and .f is an arbitrary function, not
necessarily periodic, given at the set of integer j. This is a
true assertion, for the integral vanishes- except for-j = i; where 
it is w. Thus there is only one non-zero term in the summation;
namely, f. itself.

Note that (4) is equivalent to the set

ilTr
f = f [a:() * cos Xj + b(X)- sin Xj]dX

a(X) = . f. cos Xj

+00

b(X) = Y f sin Xj
J .

(5a)

(5b)

(5c)

if f. is appropriately restricted for very large j so that the summa-
tions in (5b) and (5c) are unambiguous. The equivalence of (4) and (5).
can easily be shown by substituting from (5b) and (5c) into (5a). In
making such a substitution, the variable of summation, j, must be 
changed to, say i, for a and b are not functions of j in (5a).

Now, looking at (5), we will construct a function,
to fj, through its spectral components: 

fj = -0 [a(X) e Cos Xj + b(X) sin Xj]dd
j

() = w()- a() = w(+)- 
a (X) = w (X) - a (X) = x4(A)Q ; f. cos Xj

J 

+00

b(X) = w(X)- b(L) = w(X) I. f. sin Xj: . - :-j= -0 J0

fj, related 

: . . _ _ .)
(6a) 

(6b) 

(6c)

4
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by the same numberw(X) so have not changedtheir phases. The

function f therefore is in-the-nature of a smoothed (or unsmoothed)

i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~ e -- 

If we not substitute from (6b) and (-6c) into (6a), we may

S , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. ,' . .iw __ 

write the result-:
+c0

ftw(X)!,.cos X~~ri)dX (7

'E --. 7r .= 0 -

If we next invent a variable, i',:

0~~~~j. i'= i -=j ....
.

and substitute into(7), we may write the t :result as the set

i i= ~> fiti W1 + ; :(8a)

J=~ j+i

S 01W1i w(X) cos Xi * dX (8b)
0

But (8b) has the form of (5a), where a(X) = w(X) and b(X) = .T0, 

f and therefore, 

: 0 E w(X) = Wi cos Xi: 

-~~~~~.{/" ... i= . -. : .. = _ _.-

Equation (8b) shows W. to be an even function of i, that is,t

W-i W+i, therefore

':~~~~~~~~c

w(X) =2 ai Wi cos Xi .: 0; (8c) 0 :

i=o - :

As with fu in (5a), Wi in (8c) must be appropriately restricted .

for very large i. --

Equation (8a) may be regarded as describing a "smoothing"

process, with i being the distance from the central point, j,

and Wi being the corresponding weight given each point in the

smoothing." Given a set of such weights, WI-, the response

may be determined by (8c). If, on the other hand, we were 

given a desired response, w(X), the "smoothing" weights,.Wi,

Acould be determined from (8b). rma y ~~ be d e emi e b y ( c. -f .:n theohrhndewr

5



TV. 1 Smoothing Periodic Functions

If fj cycles in J points, that is, if -

fj-kJ jf

where k is any integer, we assert

% 31½2 2irt(j-i)
fj = 7 E oifi I cos (9a)

i=o Q=o

where Z is an integer, and may be related to X in (4):

t9 - (9b)

In (9) the upper limit, 1½J, on the summation over g does not

exist as an integer if J is odd. In that case it is to be

understood that the summation extends only to include Z 
= ½(J-l),

where since k # 2J, , = 1.

Equation (9) is true for reasons similar to those for (4).

The summation over Z, according to (3a). is if J is even:

t J ) c J n J s (2(j-i) 2 1
which vanishes unless

2ir(j-i) = 2kr

J

i.e., i = j - kJ. In that case its limiting value is ½-J. If J
is odd, we use (3e) for the summation over -:

w t Tri0=J csc •(j-i) sin (2(J- 2 J}

which also vanishes unless i = j - kJ, in which case its limiting

value is also -J:

Again, in (9) as in (4), unless j 
= kJ, where k is any integer,

there is only one term in the summation over i, namely fi-kJ, and

(9) is merely a reassertion of the periodicity of f:

f - f .
j j-kJ

6
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If J-= kJi there are two terms each equal to 3J/2,- but-they are

theterms for i 0 and i -- J, for which ½= .Note that (9)'

is.. equivalent to the system : -

j + b sin j)Oa)Q-9 -- .=oa
a 2 o

a =-

2 I
bt = 7 1

j j=o

(lOb)
Cjfj cos Xtj

(10c)ajfj sin X i
3 3 L i9

Now, we construct a function, fV, related to

its spectral components:

f through
3

½:
kJ I J

f. = cos j +

Q=o

T
2 Ja, = w a2 = w _

b =wb T= 2
: =0

If we substitute from (llb) and (llc)

...the result,.
J kJ

2' j

fj = j I aifi I ~zwt
i=o Q=o

b9 sin X~j)

Cifi cos Xkj

a.f. sin X j
J J : it 0::j

into (lla), we may write

cos X (j-i)

We next invent a variable, i,

i' = i - j

and substitute into (12), at the same time noting that any limits

which differ by J may be used in the summation over i because of

the periodicity of fj. We write the result as

7
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(llc)
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-- r ,*N 0 ^s = f +-'' -W· - (13a)
f~~~~ --' I f J+it ...

J.

2.a- cos i (13b)_. . k,.:' . 'j: ' ~ ~ ' s '_'- ..' _ (13b .
Wi-: =.. :.:_ .. ~zw: ,

....- J go' - - ' ' ''

But (13b) has the form of (10a) with a -- w-w and b = O.and

therefore, -
J

w I aW. cos XQi
i9o I11=0

Because W., according to (13b) is periodic and even in i,
1

½J
wY = 2 1

i=o

(13c)iWi cos X iI i *2. 

Equation (13a) describes a "smoothing" process, with

"smoothing" weights and responses related to each other by

(13b) and (13c).

V. Maxima of I.' :I

Now, consider some of the properties of ('().

mental definition of w' is m
m

Wm(P) = I
n=o

The funda-

ansin lnn

and therefore,
...............-- -(k) = O;- k is any integerm

Furthermore, w' is periodic in p, with period 2r:

w:m( + 2kw) =mm()mm

and it is odd in Up:

:-.W ) = - W(p)
m m

Thus, w' at U = kw is not only zero, it changes sign there and

therefore is neither a maximum nor minimum there. For the same

reasons, we also conclude that in examining w' for its largest

absolute value, we may limit our attention to the range

0 < . < · ,

8
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We can, however, quickly limitt our attention to an even- .

smaller range. Wde have . -. -

.w. _ Wo:.:.- -o s'2 .:; .. . . -
>. - . . '...-.cot: ~. sin2 .pm'-<..... - - .-

made.up of the two factors, cot ip and sin2 ½im. The
sin2 kpm is positive definite, and 0 < cot ii < - in.
0 < -<T, and therefore w' is everywhere positive in
Now,

0 < cot ½P <cot I if T< < T

0 < sin2 pm< m < 1

and therefore

0 < (' < cot 2- if v < p <.<w
: :m

But
cot

M---= cot 2m

7rTherefore, the largest maximum is not in the range m < 
we now limit our attention to the range

factor
the range
our range.

< ir, and

m
The necessary condition for maxima and minima is

a sin %-m
0 =--- -a _ sin % - s in ½-~mr I:

m cos p - cos ½iam]

-2 sin ½III m
L1 

Note that this condition is not satisfied for p = :
:~~~

2m; ap m-~ 2m ;;:0 -

-and its slope there is negative, consistent with a maximum closer
to the origin. We therefore further limit our'attention to the,.
range 

0 < < p <r

.In thatrange, our necessary condition .may be written

0 = tan ½hm - m sin 

-:We call the right-hand member F:

F =tan ½pm - m sin p

9
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and consider it along with. its first two derivatives with respecttol: - - -
17'=m(½ sec2½il- cos'.

"'". = m(½m sec2 ½iim tan' .½m + sin i)

Now

LimF= -
F O

and
Lim
7o F'= -m < 0

which shows F < 0 near the origin. But

Lim
F = +o

m
1T

which shows F =0 has at least one root in the range 0 <1< <M

Buti in that range, F" < 0, and therefore F = 0 has only-one

0 root there.

The range in which the largest maximum occurs can be further

limited. Because for 0 < U,

m. sin i < mp ,

therefore
tan ½1 1m < m

Or,
tan kPm < 2

Because the left-hand member is unity in the neighborhood of the

origin, and monotonically increases to infinity at p Tr
m

lim < (Pm)

-where (pm) satisfies
c

-teau ~(pm) =(pm) 0 < :(Iim) < =tan(.M)c cc
which has a unique solution:

--(~m) c = 0.74202rr

10
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- On the other hand, because for 0 < E ' -. -
. _ t-X-~ ~- - ~ - ~ -'mU f- 

therefore

or,

sin mp < sia s - a:.

sin r m < tan - Im
tsin mpw t~an A~im .- 0

and, therefore
cos mp < 0

mp <_- ir

To summarize, for the largest maximum
of '(p), p satisfies the set:

of the'absolute value

tan ½um - m sin p = 0

0.5ir <0pm < 0. 7 42 027r

0 0 ~~~1 < m <X 

VI. General Discrete Operators

Our previous use here of the term "smoothing operators" has meant those
linear operators that do not change phase relationships. For illustration,
in constructing fj in (6) and (11), we multiplied a(%) and b(X) by the same
variable, w(X), to get i(A) and b(A), respectively. We have shown that an
operator that does not change phase relationships is symmetrical, or "even,"
i.e., W_i = Wi. In this section, .which has been added to an earlier version
of this Office Note, we will develop the theory for general discrete operator..

Parenthetically, we should point out that "smoothing," as we have previ-
ously defined it, does not necessarily, leave the mean value of the field
unchanged. For instance, a second-difference operator, such as Wi 1, -2, 1,
for i = -1, 0, +1, respectively, ·does not change phase relationships, and is
therefore called a smoothing operator, but reduces the mean value of the
field to zero. More commonly, the term "smoothing" implies that the mean
value of the field (X = 0) is unaffected, as well as phase relationships.
This simply implies that

+00

i : 1.
-=

In order to avoid confusion in this section, we will call operators "even"
if W i = W+i; and "odd" if Wi = -W+i. "Symmetrical" operators are "even."

11 E\ 



.... S-. . - :- ;'- .- - .,

: _. . : - . s . 0 ............. : --- .- -. .
:

.

Now, according to (5)., a general discrete function, f., may
-be written........ 

- . . , , .-- :~~~~~~o-.

fj = Jo [a(X) - 'cos. Xj + b(L)j sin Xj]dX

+co

a(X) = fi cos Ai- 
.~ ,i- -CO

,a I , +0 .. 

b(X) = ; fi sin Xi - :
Jig -~ 

(14a)
p~~~~~~~~~~~~

(14b)

-- (14c) ,

We apply to fj a general discrete operator, with weights Wi, writing
the result f. :: ~~~J 

+0o: = £ W. (laTj f i= .i i-_j+i ' <(lSa)1= -00

The function fj may be written in spectral space:

1

fj = F | [a(X)° cos Xj + b(X)- sin Xj]dX (15b)

and so may Wi:

W= [a(X). cos Xi + a(X)- sin Xi]dX (16)0= fo

I 00
a( ) , I W- cos Xi

i= c

co

a (X) = W. sin Xi T(17b)
i= 00 1

If 8 = 0, then W i = Wi and the operator is even. On the other hand,
if a = 0, then W i = -Wi and the operator is odd.

Substitution from (16) into (15a) yields

o [a((X)- cos Xti + 8(X) sin i]dxI +00' I .j i- -a j+i

Inventing a new variable of summation

iA=j+i

12 
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and substituting, after some manipulation we get

fo [ fi [a(X) cos i + ~(X) sin xi] cos -i= -cod
[(X). sin xi - Q(X)- cos xi] sin xj2

Comparing this with (15b), we find

a(X) = fi [ca(X) cos Xi + B(X) sin Xi]
i= -Xc

b) = I fi [a(X) sin Xi - S(X) cos Xi]

Therefore, because of (14b) and (14c),

a(t) = a(X)- a(X) + B(X). b(X) (18a)

b(X) = -s(X)' a(X)+ c(X)- b(X) (18b)

Thus, given the set of weights, Wi, associated with an

operator, its response is determined by (17) and (18). If on the

other hand, the response [a(X) and b(X) or equivalent information]

is given, the weights are determined by (16) and the solution of

(18) for a and 6:

a a+ b bct: 0 z(X) = b2 0 :; ;.(19a)

a(X) = ab- ba b : (19b)
a2 + b 2 .....

A general discrete operator can be separated into two parts, an

even part and an odd part, To show this, we take a general discrete

operator with weights W., and invent two new operators, with weights

Ai and Bi, and with each related to W.

Ai = k(Wi + Wsi) (20a)

-Bi= ½(Wi siL: -0 W.)(20b)
: f __½w _wi

Note that Wi is the sum of Ai and Bi:

- = A1 + B1 : : (21)

13
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nd at the enftraf.point - --

- A o =W- WO

Bo -- ..... . ....
Also note that Ai is even, and B is odd:2'~~~~ ~ ~ ~ ~~~~~~~~~~~~. _ 

A-i - (w i + w+i) = +Ai -

B_ = (Wi - W+i) = -B. -

Noting (22), and substituting from (21) into-(17), we get

co -
ca(X) = 2 a i Ai cos Xi

1=0
00

O(X) = 2 1 Bi sin Xi
i=l

(22a)

(22b) -

(23a)

(23b)

Now consider two general discrete operators, with weights
Wi and W{,.which operate successively on a field f- defined by
(14). The result of the operation with W° by itself is

- 1 f1 [io(X). cos Xj + b°()- sin Xj]dX

o = +aOa + B0b (24a)

bo = -_Ba + a 0b

Next W' operates on f, and we call the result f.:
J Jifl

f = F | E[ (X). cos Aj + b(X)- sin Xj]dX

a = a'a° + '°
= -'a °0+ ab °

Substituting from (24) into (25), we find

b -aa + a :

where

a= aoa' ,f-

0 = a00V + a'lao

. :(24b)

(25a)

(25b)

(26a)

(26b)

(27a)

(27b)

14
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Now, looking at (27), a sufficient condition for the combined
response of W° and WI to be even and positive for all X is

i i

a = i-and (28a)=6~~~~~~~~~~ ' .- (28b) 
for then 

(~o.~ o , a 08,) : ~o2 +-Bo2 -(29a)
' 1(0°2as,1") = 0 (29b)

Equations (29) imply a relationship between Wi and W', for
according to (16), 

w = i i [ao(X). cos xi + °(x). sin Xi]dX
T 0

W' = 1fi [ca(X). cos Xi - °(X) :sin Xi]dX
i 7r. o

Changing the. sign of i everywhere in the last equation, we find

W'. = Wi (30)

which is a sufficient condition on the weights for an even and
globally positive response.
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